Wednesday, September 9, 2015

Page 362

Problem 1

Problem. Evaluate the expression $\log _{2} \frac{1}{8}$ without using a calculator.
Solution. We know that $\frac{1}{8}=2^{-3}$. Therefore, $\log _{2} \frac{1}{8}=-3$.

Problem 6

Problem. Write the exponential equations as logarithmic equations.
(a) $27^{2 / 3}=9$.
(b) $16^{3 / 4}=8$.

Solution. (a) The base is 27 and the exponent (logarithm) is $2 / 3$. So the logarithmic equation is

$$
\log _{27} 9=\frac{2}{3}
$$

(b) The base is 16 and the exponent (logarithm) is $3 / 4$. So the logarithmic equation is

$$
\log _{16} 8=\frac{3}{4}
$$

Problem 9

Problem. Sketch the graph of the function $y=2^{x}$ by hand.
Solution. Plot a few points.

x	y
-2	$2^{-2}=\frac{1}{4}$
-1	$2^{-1}=\frac{1}{2}$
0	$2^{0}=1$
1	$2^{1}=2$
2	$2^{2}=4$

Now draw the graph.

Problem 11

Problem. Sketch the graph of the function $y=\left(\frac{1}{3}\right)^{x}$ by hand.
Solution. Plot a few points.

x	y
-2	$\left(\frac{1}{3}\right)^{-2}=9$
-1	$\left(\frac{1}{3}\right)^{-1}=3$
0	$\left(\frac{1}{3}\right)^{0}=1$
1	$\left(\frac{1}{3}\right)^{1}=\frac{1}{3}$
2	$\left(\frac{1}{3}\right)^{2}=\frac{1}{9}$

Now draw the graph.

Problem 25

Problem. Solve the equation $3^{2 x}=75$ accurate to three decimal places.

Solution.

$$
\begin{aligned}
3^{2 x} & =75 \\
2 x & =\log _{3} 75 \\
x & =\frac{1}{2} \log _{3} 75 \\
& =\frac{\ln 75}{2 \ln 3} \\
& =1.965 .
\end{aligned}
$$

Problem 41

Problem. Find the derivative of the function $f(x)=4^{x}$.
Solution.

$$
f^{\prime}(x)=4^{x} \ln 4
$$

Problem 47

Problem. Find the derivative of the function $y=\log _{4}(5 x+1)$.
Solution. Use the rule for logarithmic functions and the Chain Rule.

$$
\begin{aligned}
y^{\prime} & =\frac{1}{(5 x+1) \ln 4} \cdot 5 \\
& =\frac{5}{(5 x+1) \ln 4}
\end{aligned}
$$

Problem 53

Problem. Find the derivative of the function $f(x)=\log _{2} \frac{x^{2}}{x-1}$.
Solution. First, rewrite the function as $f(x)=2 \log _{2} x-\log _{2}(x-1)$. Then differentiate.

$$
f^{\prime}(x)=2 \cdot \frac{1}{x \ln 2}-\frac{1}{(x-1) \ln 2} .
$$

Problem 60

Problem. Find the equation of the tangent line to the graph of the function $y=5^{x-2}$ at the point $(2,1)$.

Solution. The derivative is

$$
y^{\prime}=5^{x-2} \ln 5
$$

The slope of the tangent line at $x=2$ is $y^{\prime}(2)=5^{0} \ln 5=\ln 5$. Now use the point-slope form to get the equation of the tangent line.

$$
\begin{aligned}
y-1 & =(\ln 5)(x-2) \\
y & =1+(x-2) \ln 5 .
\end{aligned}
$$

Problem 70

Problem. Find the equation of the tangent line to the graph of the function $y=x^{1 / x}$ at the point $(1,1)$.

Solution. Use logarithmic differentiation to find y^{\prime}.

$$
\begin{aligned}
\ln y & =\ln x^{1 / x} \\
& =\frac{1}{x} \cdot \ln x \\
& =\frac{\ln x}{x} \\
\frac{y^{\prime}}{y} & =\frac{\frac{1}{x} \cdot x-(\ln x) \cdot 1}{x^{2}} \\
& =\frac{1-\ln x}{x^{2}} \\
y^{\prime} & =y \cdot \frac{1-\ln x}{x^{2}} \\
& =x^{1 / x} \cdot \frac{1-\ln x}{x^{2}} .(\text { Wow!) }
\end{aligned}
$$

Now find the slope:

$$
\begin{aligned}
y^{\prime}(1) & =1^{1} \cdot \frac{1-\ln 1}{1^{2}} \\
& =1 .
\end{aligned}
$$

Then the equation of the line is

$$
\begin{aligned}
y-1 & =1 \cdot(x-1) \\
y & =x .
\end{aligned}
$$

Problem 71

Problem. Find the indefinite integral $\int 3^{x} d x$.
Solution.

$$
\int 3^{x} d x=\frac{3^{x}}{\ln 3}+C
$$

Problem 73

Problem. Find the indefinite integral $\int\left(x^{2}+2^{-x}\right) d x$.
Solution.

$$
\begin{aligned}
\int\left(x^{2}+2^{-x}\right) d x & =\int x^{2} d x+\int 2^{-x} d x \\
& =\frac{1}{3} x^{3}+\int 2^{-x} d x
\end{aligned}
$$

For the second integral, we may want to use the substitution $u=-x, d u=-d x$.

$$
\begin{aligned}
\int 2^{-x} d x & =-\int\left(-2^{-x}\right) d x \\
& =-\int 2^{u} d u \\
& =-\frac{2^{u}}{\ln 2} \\
& =-\frac{2^{-x}}{\ln 2}
\end{aligned}
$$

So the answer is

$$
\int\left(x^{2}+2^{-x}\right) d x=\frac{1}{3} x^{3}-\frac{2^{-x}}{\ln 2}+C .
$$

Problem 75

Problem. Find the indefinite integral $\int x\left(5^{-x^{2}}\right) d x$.
Solution. Let $u=-x^{2}$ and $d u=-2 x d x$. Then

$$
\begin{aligned}
\int x\left(5^{-x^{2}}\right) d x & =-\frac{1}{2} \int(-2 x)\left(5^{-x^{2}}\right) d x \\
& =-\frac{1}{2} \int 5^{u} d u \\
& =-\frac{1}{2} \cdot \frac{5^{u}}{\ln 5}+C \\
& =-\frac{5^{-x^{2}}}{2 \ln 5}+C .
\end{aligned}
$$

